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1. Introduction

Many complex processes that contain multi-jet final states will be observed at the Large

Hadron Collider (LHC). Detailed studies of these processes will give us information about

the mechanism of electroweak symmetry breaking and, hopefully, reveal physics beyond the

Standard Model. To assess this information and interpret experimental data correctly, an

accurate theoretical description of processes at the LHC is required. In principle, Monte-

Carlo programs based on leading order (LO) computations do provide such a description [1 –

5]. However, as experience with the TEVATRON, LEP and HERA data has shown, LO

predictions often give only rough estimates. To extract maximal information from data,

more precise predictions based on next-to-leading order (NLO) calculations are required.

NLO predictions are also instrumental for reliable estimates of theoretical uncertainties

related to the truncation of the perturbative expansion.

For sufficiently complicated final states, computations required for the LHC are very

challenging. In the standard approach one uses perturbative expansion of scattering am-

plitudes in terms of Feynman diagrams. This gives an algorithm suitable for numerical

implementation. However, even for tree amplitudes, the number of Feynman diagrams
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grows faster than factorial with the number of external particles involved in a scattering

process. As a consequence, computing time needed to evaluate a scattering amplitude at a

single phase-space point, grows at least as fast. This means that computational algorithms

based on expansion in Feynman diagrams are necessarily of exponential complexity, an

undesirable feature.

In tree-level calculations exponential growth in complexity is avoided by employing

recursion relations. These relations re-use recurring groups of off-shell Feynman graphs in

an optimal manner [6 – 10]. The use of recursion relations for tree amplitudes leads to a

computational algorithm of polynomial complexity so that computing time grows as some

power of the number of external legs. Because of that, the problem of evaluating tree

amplitudes is considered a solved problem by the high-energy physics community. As was

pointed out in ref. [11], a polynomial-complexity algorithm is not available for one-loop

computations; constructing such an algorithm is the goal of the present paper.

When performing NLO computations in the Standard Model, many difficulties arise.

We need to calculate both virtual one-loop corrections and real emission processes with

one additional particle in the final state. Currently, the bottleneck in NLO calculations

for multi-particle processes is the computation of virtual corrections. The difficulty re-

lated to the factorial growth in the number of Feynman diagrams is further amplified by

a large number of terms generated when tensor loop integrals are reduced to scalar inte-

grals. Nevertheless, thanks to modern computational resources, standard methods based

on Feynman diagrams and tensor integrals reduction [12] may be extended brute force to

deal with multi-particle processes. Striking examples of the success of this approach are

recent computations of electroweak corrections to e+e− → four fermions process [13] and

one-loop six-gluon scattering amplitudes ref. [14]. Note, however, that a single phase space

point for six-gluon scattering is evaluated in about nine seconds, which is 10,000 times

slower than the evaluation time for four-gluon scattering amplitudes generated using the

same procedure. It is clear that further application of brute force approaches to yet higher

multiplicity processes are becoming unfeasible.

Unitarity-based methods for multi-loop calculations were suggested as an alternative

to the expansion in Feynman diagrams long ago. We review the status of these calculations

in the next section. The goal of the present paper is to describe a polynomial-complexity

computational algorithm for one-loop amplitudes that provides both cut-constructible and

rational parts. We start with the idea of generalized unitarity in D-dimensions and develop

it to an algorithm amenable to numerical implementation. Since one-loop amplitudes are

built up from tree amplitudes, albeit in higher-dimensional space-time, the polynomial

complexity of the algorithm is ensured. The method is flexible and can be applied to

scattering amplitudes with arbitrary internal and external particles. In particular, dealing

with massive particles is straightforward.

The outline of the paper is as follows. In section II we give an overview of the cur-

rent status of unitarity techniques. The structure of one-loop scattering amplitudes in

D-dimensions is discussed in section III. Section IV contains the discussion of the D-

dimensional residues and algebraic extraction of the coefficients of master integrals. In

section V we apply the formalism to gluon scattering amplitudes. Numerical results for
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four-, five- and six-gluon scattering amplitudes are reported in section VI. We conclude in

section VII.

2. The status of unitarity methods

The use of unitarity for loop calculations was suggested as an alternative to the Feynman-

diagrammatic expansion long ago [15 – 17]. An on-shell method for gauge theories based on

unitarity techniques was developed in refs. [18, 19]. This method leads to a higher computa-

tional efficiency than traditional methods. Within unitarity-based methods, computations

employ tree scattering amplitudes, rather than Feynman diagrams, thereby avoiding many

complications. Unitarity cuts factorize one-loop amplitudes into products of tree ampli-

tudes. Therefore, in numerical implementations computing time grows with the number of

unitarity cuts, rather than Feynman diagrams, and depends on the efficiency of algorithms

employed for evaluating tree amplitudes.

The unitarity-based approach gives a complete description of one-loop scattering am-

plitudes if it is applied in D dimensions. Any dimensionally regulated multi-loop Feynman

integral is fully reconstructible from unitarity cuts [17]. Clearly, in this case we have to

associate D-dimensional momenta and polarization vectors with each cut on-shell line, to

obtain one-loop amplitudes [20].

The first successful application of unitarity-based techniques for one-loop computa-

tions employed a four-dimensional variant of the unitarity-based approach, where four-

dimensional states were associated with each cut line [21]. In analytic calculations, such

a procedure has the advantage of allowing full use of the spinor-helicity formalism. In

this way, however, we obtain only the so-called cut-constructible part of the full one-loop

amplitude. The missing part is referred to as the rational part and has to be determined

by other methods. In particular, in supersymmetric theories, rational parts are known

to vanish. In other cases, rational parts can be fixed by using factorization properties of

one-loop amplitudes in collinear limits [21].

The idea of generalized unitarity was introduced in refs. [21, 22]. An important step in

developing unitarity-based methods was made in [22] where it was shown that coefficients

of four-point scalar integrals for multi-gluon processes can be calculated using quadruple

cuts. This approach is also suitable for direct numerical implementation. A quadruple cut

factorizes an one-loop amplitude into a product of four tree amplitudes. From unitarity

constraints, we derive two complex solutions for the loop-momentum. The product of

tree amplitudes can be evaluated using these solutions. Coefficients of scalar four-point

functions are obtained by taking averages.

Unfortunately, the simplicity of the above procedure does not generalize easily to the

computation of full one-loop amplitudes. In that case, we also have to determine coefficients

of one- , two- and three-point scalar integrals. For example, when a double cut is applied to

determine coefficients of two-point functions, we have to account for the fact that parts of

these contributions are already contained in quadruple and triple cuts. Analytic separation

of these overlapping contributions proved to be complicated.
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An efficient algebraic method to separate the overlapping contributions was described

in ref. [23]. Developing upon this idea, flexible unitarity-based computational techniques

were suggested in refs. [24, 25] where it was shown how generalized unitarity can be imple-

mented numerically. Analytic techniques were further developed in refs. [26, 27]. All these

papers address primarily cut-constructible parts of scattering amplitudes.

These developments provide a polynomial-complexity computational algorithm for cut-

constructible parts of scattering amplitudes. However, techniques for calculating rational

parts are much less developed. Three methods for computing rational parts are currently

available.

In refs. [28, 29] it was suggested to determine rational parts of tensor one-loop integrals

analytically and employ traditional diagrammatic methods to obtain scattering amplitudes.

This leads to an exponential-, rather than polynomial-complexity algorithm, negating all

the progress achieved with the determination of the cut-constructible part using numerical

unitarity techniques.

The other two methods are so far analytic, but both should in principle be suitable for

numerical implementation. The so-called bootstrap method sets up a recursive computa-

tion of rational parts [30, 31] similar to tree-level unitarity-based recursion relations [10].

However, in its current formulation the bootstrap approach is not directly suitable for

numerical implementation since both the cut-constructible and rational parts contain spu-

rious poles. When the two parts are added together, spurious poles cancel. Unitarity-based

recursion relations for the rational part can only be constructed once spurious poles are

removed from the rational part. The procedure to remove these poles from the rational

part is called cut-completion; it requires analytic knowledge of the cut-constructible part.

Clearly, for complicated multi-particle processes this may be a disadvantage.

The other approach is a variant of D-dimensional unitarity method [32, 33]. Since

the cut lines are D-dimensional, tree scattering amplitudes have to be calculated in D-

dimensions. Currently, this method is restricted to analytic applications for purely gluonic

one-loop scattering amplitudes with a scalar particle propagating in the loop. In the

following sections we describe a computational method based on D-dimensional unitarity

that permits straightforward calculation of both cut-constructible and rational parts of

arbitrary one-loop scattering amplitudes.

3. One-loop amplitudes and dimensionality of space-time

Since one-loop calculations in quantum field theory lead to divergent expressions, we require

regularization at intermediate stages of the calculation. Such regularization is accomplished

by continuing momenta and polarization vectors of unobserved virtual particles to D 6= 4

dimensions [34]. On the other hand, it is convenient to keep momenta and polarization

vectors of all external particles in four dimensions since this allows us to define one-loop

scattering amplitudes through helicities of external particles. Once the dependence of a

one-loop amplitude on the dimensionality of space-time is established, we interpolate to a

non-integer number of dimensions D = 4− 2ǫ. The divergences of one-loop amplitudes are

regularized by the parameter ǫ.
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Figure 1: The generic N -point loop amplitude.

We wish to arrive at a numerical implementation of this procedure. To this end,

it is crucial to keep the number of dimensions in which virtual unobserved particles are

allowed to propagate as integer since only in this case loop momenta and polarization

sums of unobserved particles are fully defined. Therefore, we determine the dependence of

one-loop amplitudes on the dimensionality of space-time treating the latter as integer and

arrive at non-integer values (e.g. D = 4− 2ǫ) later on, by simple polynomial interpolation.

Any D-dimensional cyclic-ordered N -particle one-loop scattering amplitude (figure 1)

can be written as

A(D)({pi}, {Ji}) =

∫
dD l

i(π)D/2

N ({pi}, {Ji}; l)
d1d2 · · · dN

, (3.1)

where {pi} and {Ji} are the two sets that represent momenta and sources (polarization vec-

tors, spinors, etc.) of external particles. The numerator structure N ({pi}, {Ji}; l) depends

on the particle content of the theory. The denominator is a product of inverse propagators

di = di(l) = (l + qi)
2 − m2

i =


l − q0 +

i∑

j=1

pi




2

− m2
i , (3.2)

where the four-vector q0 represents the arbitrary parameterization choice of the loop mo-

mentum.

The one-loop amplitude can be written as a linear combination of master integrals

A(D) =
∑

[i1|i5]

ei1i2i3i4i5I
(D)
i1i2i3i4i5

+
∑

[i1|i4]

di1i2i3i4I
(D)
i1i2i3i4
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+
∑

[i1|i3]

ci1i2i3I
(D)
i1i2i3

+
∑

[i1|i2]

bi1i2I
(D)
i1i2

+
∑

[i1|i1]

ai1I
(D)
i1

, (3.3)

where we introduced the short-hand notation [i1|in] = 1 ≤ i1 < i2 < · · · < in ≤ N . The

master integrals on the r.h.s. of eq. (3.3) are defined as

I
(D)
i1···iM

=

∫
dDl

i(π)D/2

1

di1 · · · diM

. (3.4)

The coefficients of master integrals for this choice of basis depend on the number of dimen-

sions D which, in practical calculations in dimensional regularization, needs to be taken

as D = 4− 2ǫ. Since we aim at numerical implementation of D-dimensional unitarity, this

is inconvenient. We explain below how to change the basis of master integrals to make

coefficients D-independent.

The D-dependence of one-loop scattering amplitudes associated with virtual parti-

cles comes from two sources. When we continue loop momenta and polarization vectors

to higher-dimensional space time, the number of spin eigenstates changes. For example,

massless spin-one particles in Ds dimensions have Ds − 2 spin eigenstates while spinors in

Ds dimensions have 2(Ds−2)/2 spin eigenstates. In the latter case, Ds should be even.

The spin density matrix for a massless spin-one particle with momentum l and polar-

ization vectors e
(i)
µ is given by

Ds−2∑

i=1

e(i)
µ (l)e(i)

ν (l) = −g(Ds)
µν +

lµbν + bµlν
l · b , (3.5)

where bµ is an arbitrary light-cone gauge vector associated with a particular choice of

polarization vectors. Similarly, the spin density matrix for a fermion with momentum l

and mass m is given by

2(Ds−2)/2∑

i=1

u(i)(l)u(i)(l) = /l + m =

D∑

µ=1

lµγµ + m . (3.6)

While, as we see from these examples, the number of spin eigenstates depends explicitly

on the space-time dimensionality, the loop-momentum l itself has implicit D-dependence.

We can define the loop momentum as a D-dimensional vector, with the requirement D ≤
Ds [35]. We now extend the notion of dimensional dependence of the one-loop scattering

amplitude in eq. (3.1) by taking the sources of all unobserved particles in Ds-dimensional

space-time

A(D,Ds)({pi}, {Ji}) =

∫
dD l

i(π)D/2

N (Ds)({pi}, {Ji}; l)
d1d2 · · · dN

. (3.7)

The numerator function N (Ds)({pi}, {Ji}; l) depends explicitly on Ds through the number

of spin eigenstates of virtual particles. However, the dependence of the numerator function

on the loop momentum dimensionality D emerges in a peculiar way. Since external particles

are kept in four dimensions, the dependence of the numerator function on D−4 components
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of the loop momentum l appears only through its dependence on l2. Specifically

l2 = l
2 − l̃2 = l21 − l22 − l23 − l24 −

D∑

i=5

l2i , (3.8)

where l and l̃ denote four- and (D − 4)-dimensional components of the vector l. It is

apparent from eq. (3.8) that there is no preferred direction in the (D − 4)-dimensional

subspace of the D-dimensional loop momentum space.

A simple, but important observation is that in one-loop calculations, the dependence

of scattering amplitudes on Ds is polynomial. This happens because, for such dependence

to appear, we need to have closed loops of contracted metric tensors and/or Dirac matrices

coming from vertices and propagators. For the cases that we consider in this paper, only

a single loop of contracted metric tensors can appear, which implies that the dependence

on Ds is linear. We find

N (Ds)(l) = N0(l) + (Ds − 4)N1(l). (3.9)

We emphasize that there is no explicit dependence on either Ds or D in functions N0,1.

For numerical calculations we need to separate the two functions N0,1. To do so,

we compute the left hand side of eq. (3.9) for Ds = D1 and Ds = D2 and, after taking

appropriate linear combinations, obtain

N0(l) =
(D2 − 4)N (D1)(l) − (D1 − 4)N (D2)(l)

D2 − D1
,

N1(l) =
N (D1)(l) −N (D2)(l)

D2 − D1
. (3.10)

Because both D1 and D2 are integers, amplitudes are numerically well-defined. We will

comment more on possible choices of D1,2 in the forthcoming sections; here suffice it to say

that if fermions are present in the loop, we have to choose even D1 and D2.

Having established the Ds-dependence of the amplitude, we discuss analytic continua-

tion for sources of unobserved particles. We can interpolate Ds either to Ds → 4− 2ǫ (the

t’Hooft-Veltman (HV) scheme) [34] or to Ds → 4 (the four-dimensional helicity (FDH)

scheme) [35]. The latter scheme is of particular interest in supersymmetric (SUSY) cal-

culations since all SUSY Ward identities are preserved. We see from eq. (3.9) that the

difference between the two schemes is simply −2ǫN1.

We now substitute eq. ( 3.10) into eq. (3.7). Upon doing so, we obtain explicit expres-

sions for one-loop amplitudes in HV and FDH schemes. We derive

AFDH =

(
D2 − 4

D2 − D1

)
A(D,Ds=D1) −

(
D1 − 4

D2 − D1

)
A(D,Ds=D2),

AHV = AFDH −
(

2ǫ

D2 − D1

)(
A(D,Ds=D1) −A(D,Ds=D2)

)
. (3.11)

We emphasize that Ds = D1,2 amplitudes on the r.h.s. of eq. (3.11) are conventional one-

loop scattering amplitudes whose numerator functions are computed in higher-dimensional
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space-time, i.e. all internal metric tensors and Dirac gamma matrices are in integer Ds =

D1,2 dimensions. The loop integration is in D ≤ Ds dimensions. It is important that

explicit dependence on the regularization parameter ǫ = (4 − D)/2 is not present in these

amplitudes. For this reason, eq. (3.11) renders itself to straightforward numerical imple-

mentation. In particular, numerical implementation of Ds-dimensional unitarity cuts is

now straightforward, as cut internal lines possess well-defined spin density matrices. The

Ds-dimensional unitarity cuts, that we discuss in detail in the next section, decompose

amplitudes into a linear combination of master integrals, see eq. (3.3). We can choose the

basis of master integrals in such a way that no explicit D-dependence in the coefficients

appears. Only after the reduction to master integrals is established, we continue the space-

time dimension associated with the loop momentum to D → 4 − 2ǫ, thereby regularizing

the master integrals.

4. Ds-dimensional unitarity cuts

The amplitudes on the r.h.s. of eq. (3.11) are most efficiently calculated by using generalized

unitarity applied in Ds dimensions. Since many aspects of the calculation in this case are

the same as in four-dimensional generalized unitarity, we focus on new features that appear

for Ds > 4. Our discussion follows ref. [24] which details the Ds = 4 case.

The important issue is the set of master integrals that we have to deal with when

applying Ds-dimensional unitarity cuts. Cutting a propagator i requires finding the loop

momentum l such that equation di(l) = 0 is satisfied. Therefore, each cut imposes one

constraint on the loop momentum. In four dimensions, where loop momentum has only

four components, one can cut at most four propagators without over-constraining the

system of equations. This leads to the conclusion that four-point integrand functions in

four-dimensions are required whereas five-point and higher-point functions aren’t.

When we compute an amplitude in Ds > 4 dimensions, we may also use the additional

D − 4 components of the loop momenta to set more inverse propagators to zero. How-

ever, since all external momenta are four-dimensional, additional components of the loop

momentum enter all propagators in a particular combination

s2
e = −

D∑

i=5

(l · ni)
2 = −

D∑

i=5

(l̃ · ni)
2, (4.1)

where ni>4 are orthonormal basis vectors (ni · nj = δij) of the (D − 4)-dimensional sub-

space embedded in a D-dimensional space. Therefore, when we move from four to Ds

dimensions, at most five inverse propagators can be set to zero. Therefore, for Ds > 4, the

highest-point master integral that should be included into the master integrals basis is a

five-point function. Hence the integrand of the N -particle amplitude in eq. (3.1) can be

parameterized as

N (Ds)(l)

d1d2 · · · dN
=
∑

[i1|i5]

e
(Ds)
i1i2i3i4i5

(l)

di1di2di3di4di5

+
∑

[i1|i4]

d
(Ds)
i1i2i3i4(l)

di1di2di3di4

– 8 –
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+
∑

[i1|i3]

c
(Ds)
i1i2i3

(l)

di1di2di3

+
∑

[i1|i2]

b
(Ds)
i1i2 (l)

di1di2

+
∑

[i1|i1]

a
(Ds)
i1

(l)

di1

. (4.2)

where the dependence on the external momenta and sources are suppressed. From four-

dimensional unitarity we know that computation of each cut of the scattering amplitude

is simplified if convenient parameterization of the residue is chosen. We now discuss how

these parameterizations change when Ds-dimensional unitarity cuts are considered.

4.1 Pentuple residue

To calculate the pentuple residue, we choose momentum l such that five inverse propagators

in eq. (4.2) vanish. We define

e
(Ds)
ijkmn(lijkmn) = Resijkmn

(
N (Ds)(l)

d1 · · · dN

)
. (4.3)

The momentum lijkmn satisfies the following set of equations di(lijkmn) = · · · =

dn(lijkmn) = 0. The solution is given by

lµijkmn = V µ
5 +

√
−V 2

5 + m2
n

α2
5 + · · · + α2

D

(
D∑

h=5

αhnµ
h

)
, (4.4)

where mn is the mass in the propagator dn which is chosen to be as dn = l2 − m2
n by

adjusting the reference vector q0. The parameters αh can be chosen freely. The four-

dimensional vector V µ
5 depends only on external momenta and propagator masses. It is

explicitly constructed using the Vermaseren-van Neerven basis as outlined in ref. [24]. The

D− 4 components of the vector lijkmn are necessarily non-vanishing; for simplicity we may

choose lijkmn to be five-dimensional, independent of Ds. We will see below that this is

sufficient to determine pentuple residue.

To restrict the functional form of the pentuple residue eijkmn(l) we apply the same

reasoning as in four-dimensional unitarity case, supplemented with the requirement that

e
(Ds)
ijkmn(l) depends only on even powers of se; this requirement is a necessary consequence

of the discussion around eq. (3.8). These considerations lead to the conclusion that the

pentuple residue is independent of the loop momentum

e
(Ds)
ijkmn(l) = e

(Ds,(0))
ijkmn . (4.5)

To calculate e(0) in the FDH scheme, we employ eq. (3.10) and obtain

e
(0),FDH
ijkmn =

(
D2 − 4

D2 − D1

)
Resijkmn

(
N (D1)(l)

d1 · · · dN

)
−
(

D1 − 4

D2 − D1

)
Resijkmn

(
N (D2)(l)

d1 · · · dN

)
. (4.6)

The calculation of the residues of the amplitude on the r.h.s. of eq. (4.6), is simplified by

their factorization into products of tree amplitudes

Resijkmn

(
N (Ds)(l)

d1 · · · dN

)
=
∑

M(li; pi+1, . . . , pj ,−lj) ×M(lj ; pj+1, . . . , pk;−lk) (4.7)

×M(lk; pk+1, . . . , pm;−lm) ×M(lm; pm+1, . . . , pn;−ln)

×M(ln; pn+1 . . . , pi;−li).
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Here, the summation is over all different quantum numbers of the cut lines. In particular,

we have to sum over polarization vectors of the cut lines. This generates explicit Ds

dependence of the residue, as described in the previous section. Note that the complex

momenta lµh = lµ + qµ
h are on-shell due to the unitarity constraint dh = 0.

4.2 Quadrupole residue

The construction of the quadrupole residue follows the discussion of the previous subsection

and generalizes the four-dimensional case studied in [23, 24]. We define

d
(Ds)
ijkn (l) = Resijkn


N (Ds)(l)

d1 · · · dN
−
∑

[i1|i5]

e
(Ds,(0))
i1i2i3i4i5

di1di2di3di4di5


 , (4.8)

where the last term in the r.h.s. is the necessary subtraction of the pentuple cut contribu-

tion. We now specialize to the FDH scheme. In this case, the most general parameterization

of the quadrupole cut is given by

d
FDH
ijkn (l) = d

(0)
ijkn + d

(1)
ijkns1 + (d

(2)
ijkn + d

(3)
ijkns1)s

2
e + d

(4)
ijkns4

e, (4.9)

where s1 = l · n1. We used the fact that, in renormalizable quantum field theories, the

highest rank of a tensor integral that may contribute to a quadrupole residue is four and

that only even powers of se can appear on the r.h.s of eq. (4.9). The solution of the unitarity

constraint is given by

lµijkn = V µ
4 +

√
−V 2

4 + m2
n

α2
1 + α2

5 + · · · + α2
D

(
α1n

µ
1 +

D∑

h=5

αhnµ
h

)
. (4.10)

The vector V4 is defined in the space spanned by the three independent inflow momenta

{ki, kj , kk} and n1 is the unit vector that describes the one-dimensional “transverse space”,

i.e. ki · n1 = 0, kj · n1 = 0, kk · n1 = 0, ni · nj = δij [24].

To determine the momentum-independent coefficients d
(0,1,...,4)
ijkn in eq. (4.9), we compute

the quadrupole residue of the one-loop scattering amplitude for different values of the

loop momentum l that satisfies the unitarity constraint. This entails choosing different

values for parameters αi in eq. (4.10). As a first step, we may choose l to be a four-

dimensional vector embedded in Ds-dimensional space (αi≥5 = 0). Then se = 0 and the

parameterization of the residue in eq. (4.9) becomes identical to a four-dimensional case.

Standard manipulations described in refs. [23, 24] then allow us to find d
(0)
ijkn and d

(1)
ijkn. To

determine the remaining coefficients, we consider loop momenta in dimensions D > 4 such

that di = dj = dk = dm = 0 but se 6= 0. We accomplish this by adjusting the value of α5.

By choosing appropriate loop momenta, we determine all the remaining three coefficients

of the quadrupole residue by solving a linear system of equations.

4.3 Triple, double and single-line cuts

Calculation of triple, double and single cuts proceeds in full analogy with what has been

described for pentuple and quadrupole cuts. The only modification concerns parameteri-

zation of residues.
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The general parameterization of a triple cut in the FDH scheme is given by

cFDH
ijk (l) = c

(0)
ijk + c

(1)
ijks1 + c

(2)
ijks2 + c

(3)
ijk(s

2
1 − s2

2) + s1s2(c
(4)
ijk + c

(5)
ijks1 + c

(6)
ijks2)

+c
(7)
ijk s1 s2

e + c
(8)
ijk s2 s2

e + c
(9)
ijks

2
e, (4.11)

where s1 = l · n1 and s2 = l · n2. The solution of the unitarity constraint is given by

lµijk = V µ
3 +

√
−V 2

3 + m2
k

α2
1 + α2

2 + α2
5 + · · · + α2

D

(
α1n

µ
1 + α2n

µ
2 +

D∑

h=5

αhnµ
h

)
. (4.12)

The vector V3 is defined in the space spanned by the two independent inflow momenta

{ki, kj} and n1,2 are orthonormal vectors that describe the two-dimensional “transverse

space”, i.e. ki · n1,2 = 0, kj · n1,2 = 0, ni · nj = δij [24].

The general parameterization of a double cut is given by

b
FDH
ij (l) = b

(0)
ij + b

(1)
ij s1 + b

(2)
ij s2 + b

(3)
ij s3 + b

(4)
ij (s2

1 − s2
3) + b

(5)
ij (s2

2 − s2
3) + b

(8)
ij s2s3

+b
(6)
ij s1s2 + b

(7)
ij s1s3 + b

(9)
ij s2

e, (4.13)

where s1 = l · n1, s2 = l · n2 and s3 = l · n3. The solution of the unitarity constraint is

given by

lµij = V µ
2 +

√
−V 2

2 + m2
j

α2
1 + α2

2 + α2
3 + α2

5 + · · · + α2
D

(
α1n

µ
1 + α2n

µ
2 + α3n

µ
3 +

D∑

h=5

αhnµ
h

)
. (4.14)

The vector V2 is proportional to the inflow momentum {ki} and n1,2,3 are orthonormal

vectors that describe the three-dimensional “transverse space”, i.e. ki · n1,2,3 = 0, ni · nj =

δij [24]. Finally, we note that the parameterization of a single-line residue is the same as

in the four-dimensional case described in ref. [24].

4.4 One-loop amplitudes and master integrals

Following the strategy outlined in previous subsections, we obtain pentuple, quadrupole,

triple, double and single-line residues. These residues give us coefficients of master integrals

through which the one-loop amplitude is expressed.

Because we have more coefficients in our parameterization of residues, than in the four-

dimensional case, we end up with a larger number of master integrals. The new master

integrals include the five-point function and various se-dependent terms that appear in

quadrupole, triple and double residues. We will comment on the fate of the five-point

function shortly.

Consider now the se-dependent master integrals. Some of them contain scalar products

l · n1,2 and vanish upon angular integration over l. Neglecting these spurious terms, we

have to deal with four additional master integrals. We can rewrite those integrals through

conventional four-, three- and two-point functions in higher-dimensional space-time. We
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find
∫

dDl

i(π)D/2

s2
e

di1di2di3di4

= −D − 4

2
I
(D+2)
i1i2i3i4

,

∫
dDl

i(π)D/2

s4
e

di1di2di3di4

=
(D − 2)(D − 4)

4
I
(D+4)
i1i2i3i4

, (4.15)

∫
dDl

i(π)D/2

s2
e

di1di2di3

= −(D − 4)

2
I
(D+2)
i1i2i3

,

∫
dDl

i(π)D/2

s2
e

di1di2

= −(D − 4)

2
I
(D+2)
i1i2

.

Using eq. (4.15), we arrive at the following representation of the scattering amplitude

A(D) =
∑

[i1|i5]

e
(0)
i1i2i3i4i5

I
(D)
i1i2i3i4i5

+
∑

[i1|i4]

(
d
(0)
i1i2i3i4

I
(D)
i1i2i3i4

−D−4

2
d
(2)
i1i2i3i4

I
(D+2)
i1i2i3i4

+
(D−4)(D−2)

4
d
(4)
i1i2i3i4

I
(D+4)
i1i2i3i4

)

+
∑

[i1|i3]

(
c
(0)
i1i2i3

I
(D)
i1i2i3

− D − 4

2
c
(9)
i1i2i3

I
(D+2)
i1i2i3

)

+
∑

[i1|i2]

(
b
(0)
i1i2

I
(D)
i1i2

− D − 4

2
b
(9)
i1i2

I
(D+2)
i1i2

)
+

N∑

i1=1

a
(0)
i1

I
(D)
i1

. (4.16)

We emphasize that the explicit D-dependence on the r.h.s. of eq. (4.16) is the consequence

of our choice of the basis for master integrals in eq. (4.15).

We note that the above decomposition is valid for any value of D. We can now

interpolate the loop integration dimension D to D → 4 − 2ǫ. The extended basis of

master integrals that we employ provides a clear separation between cut-constructible and

rational parts of the amplitude. The cut-constructible part is given by the integrals in

D-dimensions in eq. (4.16), while the rational part is given by the integrals in D + 2 and

D + 4 dimensions. However, it is possible to use smaller basis of master integrals by

rewriting integrals {I(D+4)
i1i2i3i4

, I
(D+2)
i1i2i3i4

, I
(D+2)
i1i2i3

, I
(D+2)
i1i2

} in terms of {I(D)
i1i2i3i4

, I
(D)
i1i2i3

, I
(D)
i1i2

} using

the integration-by-parts techniques.

Since we are interested in NLO computations, we only need to consider the limit ǫ → 0

in eq. (4.16) and neglect contributions of order ǫ. This leads to certain simplifications. First,

in this limit, we can re-write the scalar 5-point master integral as a linear combination of

four-point master integrals up to O(ǫ) terms. If we employ this fact in eq. (4.16), we obtain

lim
D→4−2ǫ



∑

[i1|i5]

e
(0)
i1···i5

I
(D)
i1···i5

+
∑

[i1|i4]

d
(0)
i1···i4

I
(D)
i1···i4


 =

∑

[i1|i4]

d̃
(0)
i1···i4

I
(4−2ǫ)
i1···i4

+ O(ǫ) . (4.17)

Note that since scalar five-point function is cut-constructible, it does not contribute to

the rational part. Second, since limD→4(D − 4) × I
(D+2)
i1i2i3i4

= 0, the 6-dimensional 4-point

integral can be neglected. Finally, the 6-dimensional 2-point, 6-dimensional 3-point and
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8-dimensional 4-point integrals are all ultraviolet divergent and produce contributions of

order ǫ−1. Therefore, factors (D − 4) that multiply these integrals in eq. (4.16) pick up

divergent terms and produce ǫ-independent, finite contributions

lim
D→4

(D − 4)(D − 2)

4
I
(D+4)
i1i2i3i4

= −1

6
,

lim
D→4

(D − 4)

2
I
(D+2)
i1i2i3

=
1

2
, (4.18)

lim
D→4

(D − 4)

2
I
(D+2)
i1i2

=
m2

i1
+ m2

i2

2
− 1

6
(qi1 − qi2)

2 .

Combining everything together, we can write any one-loop amplitude up to terms of

order ǫ as a linear combination of cut-constructible and rational parts.

AN = ACC
N + RN . (4.19)

The expression for the cut-constructible part reads

ACC
N =

∑

[i1|i4]

d̃
(0)
i1i2i3i4

I
(4−2ǫ)
i1i2i3i4

+
∑

[i1|i3]

c
(0)
i1i2i3

I
(4−2ǫ)
i1i2i3

+
∑

[i1|i2]

b
(0)
i1i2

I
(4−2ǫ)
i1i2

+

N∑

i1=1

a
(0)
i1

I
(4−2ǫ)
i1

, (4.20)

where coefficients d̃
(0)
i1···i4

are implicitly defined in eq. (4.17). For the rational part, we obtain

RN = −
∑

[i1|i4]

d
(4)
i1i2i3i4

6
−
∑

[i1|i3]

c
(9)
i1i2i3

2
+
∑

[i1|i2]

(
(qi1 − qi2)

2

6
−

m2
i1

+ m2
i2

2

)
b
(9)
i1i2

. (4.21)

Finally, we point out that various master integrals required for one-loop computations can

be found in ref. [36].

5. Gluon scattering amplitudes in QCD

We applied the method described in the previous sections to compute gluon scattering

amplitudes in QCD. It is well-known that these amplitudes can be represented as linear

combinations of simpler objects, called color-ordered sub-amplitudes. For example, the

tree amplitude for n-gluon scattering reads [37, 38]

Atree
n ({pi, λi, ai}) = gn−2

∑

σ∈Sn/Zn

Tr (T aσ(1) · · ·T aσ(n))Atree
n

(
p

λσ(1)

σ(1) , . . . , p
λσ(n)

σ(n)

)
, (5.1)

where pi, λi, ai stand for momenta, helicities and color indices of external gluons, g is

the coupling constant and T a are generators of the SU(Nc) color algebra normalized as

Tr(T aT b) = δab. The sum in eq. (5.1) runs over (n− 1)! non-cyclic permutations of the set

{1, . . . , n}. Amplitudes Atree
n

(
p

λσ(1)

σ(1) , . . . , p
λσ(n)

σ(n)

)
are color-ordered tree sub-amplitudes.

One-loop amplitudes can be decomposed in a similar, but slightly more complicated

fashion [39]. Considering one-loop amplitudes for n-gluon scattering, where all internal

particles are also gluons, we write

An ({pi, λi, ai}) = gn

[n/2]+1∑

c=1

∑

σ∈Sn/Sn;c

Grn;c(σ)An,c(σ), (5.2)
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where

Grn;1(σ) = NcTr (T aσ(1) · · ·T aσ(n)) , (5.3)

and

Grn;c(σ) = Tr (T aσ(1) · · ·T aσ(c−1)) Tr (T aσ(c) · · ·T aσ(n)) . (5.4)

In eq. (5.2) [x] is the largest integer number smaller than or equal to x and Sn,c are subsets

of Sn that leave the double trace in eq. (5.4) invariant.

Since sub-amplitudes possess a number of symmetries under cyclic permutations of

external particles and parity, not all An,1 amplitudes are independent. Moreover, all An,c>1

amplitudes can be written as linear combinations of An,1 amplitudes. Because of that, there

are four independent helicity sub-amplitudes for four- and five-gluon scattering and eight

independent helicity sub-amplitudes for six-gluon scattering. Scattering amplitudes for

four, five and six gluons are available in the literature; this allows us to check the validity

of our method.

The method described in the previous section is amenable to straightforward numerical

implementation. We construct a list of all possible cuts of a given sub-amplitude. Those

cuts that correspond to two-point functions for light-like incoming momenta are discarded

since corresponding master integrals vanish in dimensional regularization.

Each cut in the list is computed as a product of tree amplitudes which are obtained

using Berends-Giele recurrence relations [6]. The recurrence relations themselves do not

change when we construct gluon scattering amplitudes in higher-dimensional space-time.

However, polarization vectors for cut gluon lines have to be extended. To discuss this

extension explicitly, we now choose specific values for space-time dimensionalities D1,2 in

eq. (3.11). Since we deal with pure gluonic amplitudes, we may consider D1 = 5 and

D2 = 6. We obtain

AFDH = 2A(D,Ds=5) −A(D,Ds=6). (5.5)

Computation of residues discussed in the previous section requires se 6= 0. This can

be easily accomplished by allowing the projection of the loop momentum on the fifth

direction to be non-vanishing, while always keeping l · n6 = 0, even for Ds = 6. Hence, for

computing residues of gluon amplitudes we have to consider a few cases of how four- and

five-dimensional loop momentum can be embedded into five- and six-dimensional space-

time. For the sake of clarity, we describe those cases separately.

For Ds = 5 and four-dimensional loop momentum, we have l · n5 = 0. This allows us

to write

3∑

i=1

eµ
i eν

i =





ρµν(l, η), µ, ν ∈ 4 dim;

−nµ
5nν

5 , µ = 5, ν = 5;

0, otherwise,

(5.6)

where

ρµν(l, η) = −gµν +
(lµην + lνην)

l · η , (5.7)

and η is a four-dimensional light-cone vector such that l · η 6= 0.
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For Ds = 6 and four-dimensional loop momentum, we have l ·n5 = l ·n6 = 0. We then

choose the following expression for gluon density matrix

4∑

i=1

eµ
i eν

i =





ρµν(l, η), µ, ν ∈ 4 dim;

−nµ
5nν

5, µ = 5, ν = 5;

−nµ
6nν

6, µ = 6, ν = 6;

0, otherwise.

(5.8)

For Ds = 5 and five-dimensional loop momentum, we write lµ = l
µ

+ βnµ
5 , where

l · n5 = 0. Also, l2 = 0, but l
2

= −β2 6= 0. Then, we construct polarization vectors by

taking them to be in the three-dimensional subspace of a five-dimensional space, which is

orthogonal to l and n5. Specifically, we have

3∑

i=1

eµ
i eν

i =

{
−ωµν(l); µ, ν ∈ 4 dim;

0, otherwise,
(5.9)

where ωµν = −gµν + l
µ
l
ν
/l

2
, with all indices restricted to four-dimensions. From a four-

dimensional viewpoint, eq. (5.9) is a density matrix of a spin-one particle with the mass

l
2
.

For Ds = 6 and five-dimensional loop momentum, we take l = l
µ

+ βnµ
5 . In this case

l · n6 = 0. With this choice, all we need to do is to add one more polarization direction to

eq. (5.9). We obtain

4∑

i=1

eµ
i eν

i =





−ωµν(l); µ, ν ∈ 4dim;

−nµ
6nν

6 , µ = 6, ν = 6,

0, otherwise.

(5.10)

We now make the following observation. For a chosen loop momentum l, be it four-

or five-dimensional, the calculation in Ds = 6 differs from the calculation in Ds = 5

by a single polarization component of the gluon, denoted n6 in eqs. (5.8), (5.10). All

external momenta and polarizations are four-dimensional, and the cut loop momentum l

that satisfies the unitarity constraint is at most five-dimensional. Because of this the n6

polarization gives non-vanishing contribution when it is contracted with itself through a

metric tensor. From this point of view, its contribution is equivalent to that of an additional

(real) scalar particle in the loop. To see this more explicitly, consider a three-gluon vertex

with two gluons polarized along the sixth dimension in six-dimensional space and the third

gluon with the four-dimensional polarization vector. Since none of the gluon momenta

have a component along the sixth dimension, we obtain

V (3)
µ1µ2µ3

(k1, k2, k3)e
µ1
1 nµ2

6 nµ3
6 ∼ eµ1

1 (k2 − k3)µ1 . (5.11)

The object on the r.h.s. of the above equation is the scalar-scalar-gluon vertex. Similar

considerations applied to a four-gluon vertex with two gluons polarized along the n6 direc-

tion immediately lead us to conclude that it becomes a scalar-scalar-gluon-gluon vertex.

Hence, any tree n-gluon amplitude with two gluons whose polarization vectors are eµ = nµ
6
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is equivalent to a tree scattering amplitude of n− 2 gluons and two scalars. This allows us

to write

A(D,Ds=6) = A(D,Ds=5) + AS
(D), (5.12)

where the amplitude AS
D is computed with a particular propagator for all internal gluon

lines −inµ
6nν

6/l
2 which, as we argued above, is equivalent to scalar contribution.

If we use eq. (5.12) in eq. (5.5), we derive the following result

AFDH = A(D,Ds=5) −AS
(D). (5.13)

It tells us that, from the point of view of generalized unitarity, computations of gluon

scattering amplitudes in the four-dimensional helicity scheme are equivalent to calculations

of gluon scattering amplitudes in five-dimensional space-time up to a term that can be

associated with a scalar contribution.

Finally, we may now write explicitly the relation between amplitudes computed in

FDH and HV schemes. Using eq. (3.11) and eq. (5.12), we derive

AHV = A(D,Ds=5) − (1 + 2ǫ)AS
(D) . (5.14)

We see that the difference between the HV and FDH schemes is entirely due to the ad-

ditional “scalar” degree of freedom that contributes to one-loop amplitudes. The relation

between unrenormalized amplitudes in two schemes becomes

AFDH −AHV = 2ǫAS. (5.15)

The contribution of a real scalar to one-loop gluon scattering amplitudes reads

AS =
cΓ

6ǫ
Atree + finite , (5.16)

where

cΓ =
Γ(1 + ǫ)Γ(1 − ǫ)2µ2ǫ

Γ(1 − 2ǫ)(4π)2−ǫ
, (5.17)

is the usual normalization factor and µ is the scale that maintains the dimensionality of

loop integrals after the loop momentum is continued to D = 4− 2ǫ dimensions. Neglecting

terms of order ǫ, we obtain the well-known relation between gluon amplitudes computed

in FDH and HV schemes [40]

AHV = AFDH − cΓ

3
Atree . (5.18)

6. Results

We now present the results of the calculation of four-, five- and six-gluon scattering ampli-

tudes in QCD. If, for a given choice of gluon helicities, the corresponding tree amplitude

does not vanish, the n-gluon one-loop sub-amplitude is written in the following way

An,1(1
λ1 , . . . , nλn) = cΓ

(
− n

ǫ2
+

1

ǫ

(
−11

3
+

n∑

i=1

ln(−si,i+1)

)
+∆λ1,...,λn

)
Atree(1

λ1 , . . . , nλn),

(6.1)
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where si,i+1 = 2pi · pi+1 + iδ, pn+1 = p1. The convenience of representing scattering

amplitudes as in eq. (6.1) is that phase conventions for gluon polarization vectors drop out

when functions ∆λ1,...,λn are computed; this feature allows for direct comparison with the

literature.

We have verified that our calculations correctly reproduce the divergent parts of

eq. (6.1). In tables 1, 2 and 3 we give the results for finite parts of color-ordered sub-

amplitudes ∆λ1,...,λn . The finite parts are split into cut-constructible and rational parts

∆λ1,...,λn = ∆cut
λ1,...,λn

+ ∆rat
λ1,...,λn

for kinematic points specified below.

On the other hand, some color-ordered sub-amplitudes for n-gluon scattering are finite;

the corresponding tree amplitudes vanish making representation eq. (6.1) senseless. For

those finite amplitudes explicit results are presented below. Note however that in this case

results depend on phase conventions adopted for gluon polarization vectors. To get rid

of this dependence, for finite amplitudes we compare absolute values |An,1| to the results

available in the literature. All results for scattering amplitudes reported below are given

in the FDH scheme; results in the HV scheme can be obtained using eq. (5.18).

Finally, we note that QCD sub-amplitudes are often calculated using supersymmetric

decomposition since in this way analytic computations are simplified. In particular, the

only part of the gluon scattering amplitude that cannot be obtained from four-dimensional

unitarity is the part where gluons scatter through a loop with virtual scalars. Dealing with

virtual scalars is easier than with virtual gluons since the number of degrees of freedom is

smaller. However, since our goal is to demonstrate the vitality of the method, we do not

employ this simplification and compute sub-amplitudes, without using the supersymmetric

decomposition.

6.1 Four gluon scattering

We consider color-ordered sub-amplitude A4,1(1
λ1 , . . . , 4λ4) for the following choice of ex-

ternal1 momenta (p = (E, px, py, pz))

p1 = (1, 0, 0, 1) ,

p2 = (1, 0, 0,−1) ,

p3 = (−1, sin θ, 0, cos θ) ,

p4 = (−1,− sin θ, 0,− cos θ) . (6.2)

with θ = π/3.

There are four sub-amplitudes that we have to consider ++++,−+++, −−++ and

− + −+. The amplitudes + + ++ and − + ++ are finite, i.e. the cut-constructible parts

of these amplitudes vanish identically and the entire results are due to rational parts. We

find

A4,1(1
+, 2+, 3+, 4+) = i cΓ × 0.33333,

A4,1(1
−, 2+, 3+, 4+) = i cΓ × 0.7500. (6.3)

1Through out this paper, we consider all external momenta as incoming.
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λ1, λ2, λ3, λ4 ∆cut ∆rat ∆

− − + + 2.53627 0.2222 2.75849

− + − + 1.90292 − 3.29626 i 0.66667 2.56959 − 3.29626 i

Table 1: Finite parts of singular four-gluon scattering amplitudes for various gluon helicities.

Cut-constructible and rational parts are shown separately.

λ1, λ2, . . . , λ5 ∆cut ∆rat ∆

− − + + + 7.3382230 − 2.1860355 i 0.24488559 − 1.4089423 i 7.58310859 − 3.5949778 i

− + − + + 12.059206 + 1.7853279 i −7.5603579 − 8.4763597 i 4.4988481 − 6.6910318 i

Table 2: Finite parts of singular five-gluon scattering amplitudes for various gluon helicities. The

cut-constructible and rational parts are shown separately.

Finite parts for the two divergent amplitudes −−++ and −+−+ are given in table 1. The

results for scattering amplitudes in eqs. (6.1), (6.3) and table 1 are in complete agreement

with ref. [41].

6.2 Five-gluon scattering

We consider sub-amplitude A5,1(1
λ1 , . . . , 5λ5) and choose external momenta to be

p1 = (1, 0, 0, 1) , p2 = (1, 0, 0,−1) , (6.4)

p3 = ξ (−1, 1, 0, 0) , p4 = ξ
(
−
√

2, 0, 1, 1
)

,

p5 = −p1 − p2 − p3 − p4,

with ξ = 2/(1 +
√

2 +
√

3) = 0.4823619098. We have to consider four sub-amplitudes

+ + + + +, − + + + +, − − + + + and − + − + +. The first two amplitudes are finite

and, hence, are entirely due to rational parts.

For the two finite amplitudes we obtain

A5,1(1
+, 2+, 3+, 4+, 5+) = i cΓ × (0.01056 − 0.6614 i) ,

A5,1(1
−, 2+, 3+, 4+, 5+) = i cΓ × (−0.6773 − 0.4976 i) . (6.5)

The results for the two divergent amplitudes are given in table 2. For all scattering ampli-

tudes, we find complete agreement with the results reported in ref. [40].

6.3 Six gluon scattering

We now present the results for the six-gluon scattering. We consider color-ordered sub-

amplitude A6,1(1, 2, 3, 4, 5) for the same external momenta as considered in ref. [14].2

Specifically, we have

p1 = 3 (−1, cos θ sin φ, sin θ, cos θ cos φ) , p2 = −3 (1, cos θ sinφ, sin θ, cos θ, cos φ) ;

p3 = 2 (1, 0, 1, 0) , p4 =
6

7
(1, sin β, cos β, 0) ,

p5 = (1, cos α sin β, cos α cos β, sin α) , p6 = −p1 − p2 − p3 − p4 − p5, (6.6)

2Our conventions differ from ref. [14] in that x and y axes are interchanged.
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λ1, λ2, . . . , λ6 ∆cut ∆rat ∆

− − + + + + −19.481065 + 78.147162 i 28.508591 − 74.507275 i 9.027526 + 3.639887 i

− + − + + + −241.10930 + 27.176200 i 250.27357 − 25.695269 i 9.164272 + 1.480930 i

− + + − + + 5.4801516 − 12.433657 i 0.19703574 + 0.25452928 i 5.677187 − 12.179127 i

− − − + + + 15.478408 − 2.7380153 i 2.2486654 + 1.0766607 i 17.727073 − 1.661354 i

− − + − + + −339.15056 − 328.58047 i 348.65907 + 336.44983 i 9.508509 + 7.869351 i

− + − + − + 31.947346 + 507.44665 i −17.430910 − 510.42171 i 14.516436 − 2.975062 i

Table 3: Finite parts of singular six-gluon scattering amplitudes for various gluon helicities. The

cut-constructible and rational parts are shown separately.

where θ = π/4, φ = π/6, α = π/3, cos β = −7/19.

We compute sub-amplitude A6,1(1, 2, 3, 4, 5, 6) for the following helicity configurations

++++++, −+++++, −−++++, −+−+++,−++−++, −−−+++, −−+−++,

−+−+−+. Among eight amplitudes, two amplitudes + + + + ++ and −+ + + ++ are

finite; the corresponding tree amplitudes vanish. For these amplitudes we find

A6,1(1
+, 2+, 3+, 4+, 5+, 6+) = i cΓ × (0.4968861 − 0.1838453 i) ,

A6,1(1
−, 2+, 3+, 4+, 5+, 6+) = i cΓ × (1.0182879 + 3.0968492 i) . (6.7)

The results for the finite parts of remaining six gluon scattering amplitudes are given in

table 3, where cut-constructible and rational parts are shown separately. For all six-gluon

amplitudes, we find an agreement,3 at least through seven digits, with the results reported

in ref. [14].

7. Conclusions

In this paper we describe a novel method for calculating one-loop scattering amplitudes,

including their rational parts. It is based on unitarity cuts in higher-dimensional space-

time. Similar to four-dimensional unitarity, one-loop amplitudes are obtained from tree

amplitudes. These tree amplitudes can be efficiently calculated using recursive algorithms

of polynomial complexity leading to an efficient method for semi-numerical evaluation of

one-loop amplitudes. Because the method is built around integer-dimensional unitarity

cuts, we do not foresee any difficulty with its application to chiral gauge theories.

Our method solves the outstanding problem of an efficient semi-numerical evaluation

of the so-called rational part of one-loop amplitudes, an important step towards automated

computation of NLO cross sections. The generality of the method allows a straightforward

calculation of NLO corrections to multi-particle processes that involve virtual particles of

arbitrary spins and masses. We hope that further development of this method will finally

bring within reach NLO computations for such complicated processes as PP → tt + 2 jets

and PP → V + 3, 4 jets.

3To obtain numerical results reported ref. [14] from our results, one should expand µ2ǫ included in the

normalization factor cΓ, eq. (5.17), in powers of ǫ and substitute µ = 6.
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